31 research outputs found

    Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

    Full text link
    In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 Ξ²\beta-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the Ξ²\beta-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143^{143}, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The paper now has 23 pages, 11 figures. This work was presented at 2006 APS March meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has been accepted for pubcliation in European Biophysical Journal on Feb 2, 200

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases

    Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models

    Full text link
    The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example during chromosome organization. Describing phenomena that cover such diverse length, and also time scales, requires models that capture the underlying physics for the particular length scale of interest. Theoretical ideas, in particular, concepts from polymer physics, have guided the development of coarse-grained models to study folding of DNA, RNA, and proteins. More recently, such models and their variants have been applied to the functions of biological nanomachines. Simulations using coarse-grained models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure

    A review of abnormalities in the perception of visual illusions in schizophrenia

    Get PDF
    Specific abnormalities of vision in schizophrenia have been observed to affect high-level and some low-level integration mechanisms, suggesting that people with schizophrenia may experience anomalies across different stages in the visual system affecting either early or late processing or both. Here, we review the research into visual illusion perception in schizophrenia and the issues which previous research has faced. One general finding that emerged from the literature is that those with schizophrenia are mostly immune to the effects of high-level illusory displays, but this effect is not consistent across all low-level illusions. The present review suggests that this resistance is due to the weakening of top–down perceptual mechanisms and may be relevant to the understanding of symptoms of visual distortion rather than hallucinations as previously thought

    Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Get PDF
    BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function

    A Combinatorial Approach to Detect Coevolved Amino Acid Networks in Protein Families of Variable Divergence

    Get PDF
    Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence

    H2r: Identification of evolutionary important residues by means of an entropy based analysis of multiple sequence alignments

    Get PDF
    BACKGROUND: A multiple sequence alignment (MSA) generated for a protein can be used to characterise residues by means of a statistical analysis of single columns. In addition to the examination of individual positions, the investigation of co-variation of amino acid frequencies offers insights into function and evolution of the protein and residues. RESULTS: We introduce conn(k), a novel parameter for the characterisation of individual residues. For each residue k, conn(k) is the number of most extreme signals of co-evolution. These signals were deduced from a normalised mutual information (MI) value U(k, l) computed for all pairs of residues k, l. We demonstrate that conn(k) is a more robust indicator than an individual MI-value for the prediction of residues most plausibly important for the evolution of a protein. This proposition was inferred by means of statistical methods. It was further confirmed by the analysis of several proteins. A server, which computes conn(k)-values is available at http://www-bioinf.uni-regensburg.de. CONCLUSION: The algorithms H2r, which analyses MSAs and computes conn(k)-values, characterises a specific class of residues. In contrast to strictly conserved ones, these residues possess some flexibility in the composition of side chains. However, their allocation is sensibly balanced with several other positions, as indicated by conn(k)

    Methionine Sulfoxides on Prion Protein Helix-3 Switch on the Ξ±-Fold Destabilization Required for Conversion

    Get PDF
    BACKGROUND: The conversion of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is the key event in prion induced neurodegenerations. This process is believed to involve a multi-step conformational transition from an alpha-helical (PrP(C)) form to a beta-sheet-rich (PrP(Sc)) state. In addition to the conformational difference, PrP(Sc) exhibits as covalent signature the sulfoxidation of M213. To investigate whether such modification may play a role in the misfolding process we have studied the impact of methionine oxidation on the dynamics and energetics of the HuPrP(125-229) alpha-fold. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular dynamics simulation, essential dynamics, correlated motions and signal propagation analysis, we have found that substitution of the sulfur atom of M213 by a sulfoxide group impacts on the stability of the native state increasing the flexibility of regions preceding the site of the modification and perturbing the network of stabilizing interactions. Together, these changes favor the population of alternative states which maybe essential in the productive pathway of the pathogenic conversion. These changes are also observed when the sulfoxidation is placed at M206 and at both, M206 and M213. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the sulfoxidation of Helix-3 methionines might be the switch for triggering the initial alpha-fold destabilization required for the productive pathogenic conversion

    Computation of Conformational Coupling in Allosteric Proteins

    Get PDF
    In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another

    The Effect of Macromolecular Crowding, Ionic Strength and Calcium Binding on Calmodulin Dynamics

    Get PDF
    The flexibility in the structure of calmodulin (CaM) allows its binding to over 300 target proteins in the cell. To investigate the structure-function relationship of CaM, we combined methods of computer simulation and experiments based on circular dichroism (CD) to investigate the structural characteristics of CaM that influence its target recognition in crowded cell-like conditions. We developed a unique multiscale solution of charges computed from quantum chemistry, together with protein reconstruction, coarse-grained molecular simulations, and statistical physics, to represent the charge distribution in the transition from apoCaM to holoCaM upon calcium binding. Computationally, we found that increased levels of macromolecular crowding, in addition to calcium binding and ionic strength typical of that found inside cells, can impact the conformation, helicity and the EF hand orientation of CaM. Because EF hand orientation impacts the affinity of calcium binding and the specificity of CaM's target selection, our results may provide unique insight into understanding the promiscuous behavior of calmodulin in target selection inside cells.Comment: Accepted to PLoS Comp Biol, 201
    corecore